Detection Of Abnormal Visual Events Using HOFO And KNN
نویسندگان
چکیده
The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. A novel algorithm is proposed to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. The images are subjected to Otsu’s method for global thresholding. A histogram of optical flow orientation as a descriptor encoding the moving information of each video frame is used here. The k-nearest neighbor (kNN) classification algorithm, following a learning period characterizing the normal behavior of training frames, detects abnormal events in the current frame. Further, a fast version of the detection algorithm is designed by fusing the optical flow computation with a background subtraction step. Finally a method to detect abnormal events on several benchmark data set is applied. Detection Of Abnormal Visual Events Using HOFO And KNN Paper ID IJIFR/ V2/ E9/ 045 Page No. 3196-3210 Subject Area Computer Science Engineering
منابع مشابه
Recognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملAutomatic Medical Image Classification and Abnormality Detection Using K- Nearest Neighbour
This research work presents a method for automatic classification of medical images in two classes Normal and Abnormal based on image features and automatic abnormality detection. Our proposed system consists of four phases Preprocessing, Feature extraction, Classification, and Post processing. Statistical texture feature set is derived from normal and abnormal images. We used the KNN classifie...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملIntrusion Detection using Text Processing Techniques with a Binary-Weighted Cosine Metric
This paper introduces a new similarity measure, termed Binary Weighted Cosine (BWC) metric, for anomaly-based intrusion detection schemes that rely on using sequences of system calls. The new similarity measure considers both the number of shared system calls between two processes as well as frequencies of those calls. The k nearest neighbor (kNN) classifier is used to categorize a process as e...
متن کاملEvent Detection in Twitter Using Text and Image Fusion
In this paper, we describe an accurate and effective event detection method to detect events from Twitter stream. It detects events using visual information as well as textual information to improve the performance of the mining. It monitors Twitter stream to pick up tweets having texts and photos and stores them into database. Then it applies mining algorithm to detect the event. Firstly, it d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015